Importance of Controlling Nanotube Density for Highly Sensitive and Reliable Biosensors Functional in Physiological Conditions

Fumiaki N. Ishikawa,† Marco Curreli,‡ C. Anders Olson,§ Hsiang-I Liao,¶ Ren Sun,† Richard W. Roberts,* Richard J. Cote,§ Mark E. Thompson,¶ and Chongwu Zhou†,*

Departments of †Electrical Engineering, ‡Chemistry, and §Pathology, University of Southern California, Los Angeles, California 90089, United States and ¶Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, United States

ABSTRACT Biosensors utilizing carbon nanotube field-effect transistors have a tremendous potential to serve as the basis for the next generation of diagnostic systems. While nanotubes have been employed in the fabrication of multiple sensors, little attention has previously been paid to how the nanotube density affects the biosensor performance. We conducted a systematic study of the effect of density on the performance of nanotube biosensors and discovered that this parameter is crucial to achieving consistently high performance. We found that devices with lower density offer higher sensitivity in terms of both detection limit and magnitude of response. The low density nanotube devices resulted in a detection limit of 1 pM in an electrolyte buffer containing high levels of electrolytes (ionic concentration ~140 mM, matching the ionic strength of serum and plasma). Further investigation suggested that the enhanced sensitivity arises from the semiconductor-like behavior—strong gate dependence and lower capacitance—of the nanotube network at low density. Finally, we used the density-optimized nanotube biosensors to detect the nucleocapsid (N) protein of the SARS virus and demonstrated improved detection limits under physiological conditions. Our results show that it is critical to carefully tune the nanotube density in order to fabricate sensitive and reliable devices.

KEYWORDS: nanotube density · percolation theory · biosensing · nanotube biosensor

*Sensitivity, percolation theory, biosensing, nanotube biosensor

Single-walled carbon nanotubes (CNTs) possess a number of unique and promising properties, such as mechanical stiffness,1,2 high carrier mobility,3 and thermal conductivity.4,5 Due to these properties, numerous efforts have been devoted to commercialize applications that incorporate CNTs. These applications include the next generation of transistors/circuits,6–13 scanning probes,14,15 mechanical composites,16–18 and transparent electronics.19–25 Chemical and biological sensing is one of the applications where CNTs, especially single-walled CNTs, are considered to be the ultimate type of sensors. For example, single-walled CNTs have the smallest diameters among various one-dimensional structured materials, where every atom in the CNTs is in contact with the environment.26–44

In the view of commercialization, researchers have traditionally preferred multiple nanotube channels in a field-effect transistor (FET) configuration (Figure 1a) over single nanotube transistors because the former offers several advantages, including higher uniformity, lower noise, and higher reproducibility.36 While the use of such networked nanotubes as FET channels was discussed in a number of previous reports,27,29,31–36,38,40–42 there is unfortunately minimal investigation correlating the role of the nanotube density to the biosensor performance. Several theoretical and experimental studies have proved that the density of nanotubes in the FET channel plays an important role in transistor performance.45–48 This correlation strongly suggests that the density of nanotubes will also affect the performance of biosensors based on nanotube networks since it is likely that the sensitivity to gate modulation (FET performance) reflects the sensitivity to gating by charged captured analytes (biosensor performance), as we have shown for In2O3 nanowire biosensors.49 Understanding the role of the nanotube density will lead to better designs of nanotube biosensors and more reliable fabrication procedures, both of which are extremely important. In this context, we report our studies on the role played by the nanotube density in FET biosensor performance and demonstrate that the control of nanotube density is critical in achieving high/reliable performance (e.g., high sensitivity, uniformity, re-
RESULTS AND DISCUSSION

In order to investigate the effect of the density of nanotube on the biosensor performance, we fabricated devices with different nanotube densities. The density was controlled by varying the time (10, 20, and 60 min) of incubation in the ferritin solution, which determines the density of iron-based catalyst nanoparticles on the substrate. Fabrication and experimental procedures are described in detail in the Methods section and Supporting Information. The density of nanotubes can be classified as follows: low (10 min), medium (20 min), and high (60 min) density. Typical SEM images of each density are shown in Figure 1b–d. While we have carefully maintained identical nanotube growth conditions for the three substrates, the nanotubes in the low density sample appear to be slightly shorter than the nanotubes in the medium density substrate. This variation in the length may also affect the percolation level and thus influence the electrical characteristics of the resulting FETs. We are confident that the observed differences in device performance (see below) are mainly due to different nanotube densities in the FET channel, rather than the presence of shorter nanotubes.

We first characterized the devices as transistors because the density of nanotubes has been shown to affect the transistor performance significantly, and it is likely to reflect the sensitivity of the devices as a biosensor, as well. Shown in Figure 2a–c are the typical plots of family of source–drain current (I_{ds}) versus source–drain voltage (V_{sd}) for different drain-back gate voltage (V_{gb}) for each nanotube density. The step of V_{g} is 3 V. The device with low nanotube density (Figure 2a) exhibits clear separation along each curve, indicating stronger gate dependence for lower density nanotube devices. As the density increases from low to medium to high (Figure 2b,c), the curve separation becomes less clear, indicating more metallic behavior. The linear behavior of the I_{ds}–V_{gs} curves under small negative bias shows that the transport is diffusive, and the contact/junction resistance contributes little to the overall device resistance. This low contact resistance can be attributed to our devices’ long channel length (~200 µm). Figure 2d shows, in log scale, the typical plots of I_{ds} versus V_{g} for low (blue), medium (green), and high (red) density nanotube devices at $V_{ds} = 1$ V. The low density device exhibited high on/off ratios (~10^5), while the medium density device exhibited moderate on/off ratios ($10^3−2$) and high density device exhibited low on/off ratios (~<10). That correlation can be explained by the conventional percolation theory applied to carbon nanotube networks. Figure 2e shows the same I_{ds}–V_{gs} plots in linear scale. The dashed lines in Figure 2e are the fitting curves to extract transconductance. Figure 2f shows on-current and transconductance extracted from the I_{ds}–V_{gs} curves. The saturation of transconductance was observed, while the on-current monotonically increased as the density increased. This is consistent with previous theoretical simulations and experimental observations that the capacitance of an array of aligned nanotubes saturates as the density increases because nanotubes screen each other.

To confirm the reproducibility of the process, we measured several devices for each density, and the distribution of on/off ratios for each density is shown in Figure 2g–i. Devices with different densities clearly exhibit different ranges of on/off ratio, confirming the reproducibility of the fabrication.

We then investigated the sensing performance of those devices using streptavidin (S-Av) as a model analyte. The sensing was carried out in 1× phosphate buffered saline (PBS). V_{ds} and drain-liquid gate voltage (V_{gb}) were 0.2 and 0 V, respectively. Constant air flow was applied to the buffer to promote mixing and minimize
the mechanical perturbation caused by adding aliquots of buffer. The sensing experimental setup is shown in Figure S1 (Supporting Information). We note that the potential of the Pt electrode, used as a gate electrode, was stable upon exposure to streptavidin in 1×PBS, indicating little possibility for false signals as previously proposed. The stability of the baseline under these conditions is discussed in the Supporting Information (Figure S2). Figure 3a shows the plot of normalized current versus time for a low density nanotube device. The device showed a ~2% decrease in conductance after exposure to 1 pM streptavidin. We attributed amine groups in streptavidin to the source of the device characteristic change since amine groups are known to have strong affinity to nanotubes with electron-donating properties and positive charges (when protonated) that are consistent with the observed trend of the changes (decrease in conductance). The device showed further sequential decreases as the streptavidin concentration increased to 100 nM. On the other hand, when a device with the medium density nanotube was exposed to 1 and 10 pM streptavidin, there was only a negligible response (<0.5%). The device showed a change larger than 1% when the device was exposed to 100 pM streptavidin. Furthermore, the device with the high density nanotube only showed responses when exposed to 1 nM streptavidin. While the low density device clearly displayed the highest sensitivity, this device was also affected by a slightly higher noise level. We are aware that noise level can be further reduced by optimizing the device geometry (using a wider or shorter channel). For this study, we deliberately kept the device dimension constant for the three different types of devices so the nanotube density was the only variable. To summarize, Figure 3d shows plots of responses for...
each device (2 high density (HD) devices, 1 medium density (MD) device, 2 low density (LD) devices) versus streptavidin concentrations. The device with the low density nanotube clearly offers the highest magnitude of response to every concentration, while the device with the high density nanotube offers the lowest magnitude of response. The device with the medium density nanotube provided responses between those two extremes. The inset shows the plot of the response versus log of the concentration of streptavidin for each device with different nanotube density. The acronyms LD, MD, and HD represent low density, medium density, and high density, respectively. The inset is the same plot with the response plotted in log scale. The dashed line represents the response level of 0.5%.

These experiments clearly demonstrate the importance of the nanotube density on the biosensor performance. This enhanced sensitivity can be partially explained by the elimination of direct metallic nanotube pathways at low density, as was confirmed in the transistor measurements (Figure 2) since conduction through metallic nanotubes is expected to be unaffected by the adsorption of proteins. However, the elimination of metallic pathways may not be the only source for this observed enhancement. In fact, the magnitude of response improved by 1 order of magnitude, while the elimination of metallic pathways is expected to improve the sensitivity only by a factor of 2–3 (from the ratio of semiconductive and metallic nanotubes).

In order to investigate the source of the sensitivity enhancement, we measured the gate dependence using liquid gate before/after the sensing experiments. We exposed devices with each density to 111 nM streptavidin solution in 1× PBS, and the shift of the threshold voltage by the exposure was measured using the liquid gate. Figure 4a–c shows $I_{DS} - V_{G}$ curves before/af-
ter the exposure to streptavidin for devices with each density. Figure 4d shows the plots of the V_t shift for each device. Surprisingly, the devices with lower nanotube density showed a pronounced shift in V_t compared to higher density devices, which can also contribute to the enhanced sensitivity. This is in sharp contrast to our previous observations about In$_2$O$_3$ nanowire biosensors where devices with different transistor performance showed the same amount of V_t shift after exposure to the analyte. The change of the I_{ds}/V_{lg} curves indicates that the sensing mechanism is due to the electrostatic interaction or charge transfer because there is little change in the transconductance. We note that in previous reports it has been proposed that the contact resistance modulation is the dominant sensing mechanism for carbon nanotube biosensors. However, this discrepancy is likely to come from the difference in the device geometry. In previous reports, a short channel length (~4 μm) was used, but our devices have a long channel length (200 μm), making the channel resistance dominant in the overall device resistance. Indeed, the transistor curves show linear $I_{ds} - V_{ds}$ proving negligible contact resistance. Furthermore, a study performed by Iddo et al. showed that carbon nanotube biosensors can be operated by a bulk modulation mechanism with a contact passivation.

We have further performed AFM imaging to estimate the number of streptavidin molecules on low and high density nanotube samples and proved that there is no significant difference in the number of streptavidin, as shown in Figure 4e,f. This suggests that the enhanced V_t shift for low density nanotubes arises from stronger interaction between nanotubes and one streptavidin molecule.

We tentatively attributed the semiconductor behavior of the low density nanotube network to the pronounced V_t shift for low density devices. When modeling the interaction between a charged protein and a nanotube as a capacitive coupling, the following relationship can be expressed:

$$\Delta Q = C_{\text{total}} \times \Delta V$$

Figure 4. I_{ds} versus V_{lg} curves before (red) and after (blue) exposure to streptavidin at the concentration of 111 nM for (a) low density, (b) medium density, and (c) high density nanotube devices. (d) Plots of the shift of V_t for devices with each density. (e,f) AFM images of low and high density carbon nanotubes after exposure to streptavidin solution. These AFM images are obtained upon scanning an area of 1 μm × 1 μm.
where ΔQ represents the amount of charges brought by the proteins, C_{Total} is the total capacitance of the carbon nanotube—double layer-liquid gate capacitor, and ΔV is the potential created by the charges on the proteins. Thus, the potential created by the charges is expressed as

$$\Delta V = \frac{\Delta Q}{C_{\text{Total}}}$$

We note that these numbers are per unit nanotube area. Total capacitance C_{Total} can be written as

$$\frac{1}{C_{\text{Total}}} = \frac{1}{C_{\text{DL}}} + \frac{1}{C_{\text{CNT}}}$$

where C_{DL} is the capacitance of the double layer and C_{CNT} is the capacitance of the carbon nanotube (quantum capacitance). Since C_{CNT} is smaller for semiconducting nanotubes than C_{CNT} for metallic nanotubes due to the lower density of states near the Fermi level, the equivalent potential ΔV becomes larger for semiconducting nanotubes. Since the characteristics of the low density nanotube network are dominated by the semiconducting nanotubes, it is likely that the low density network experiences more electrostatic interaction for a given amount of charges, that is, given amount (density) of adsorbed proteins, than the high density network which is less semiconductive.

Another possible mechanism that contributes to the density-dependent V_t shift might be the strong tube—tube screening for high density nanotube FET channels. Such screening can only be meaningful when the distance over which a charge can induce nontrivial electrostatic potential is comparable to the distance between the tube and another tube. This means the Debye length determines the area over which the tube—tube screening can play a major role. Although the Debye length of 1× PBS buffer is about 0.7 nm when calculated assuming a simple thermal equilibrium, in reality it might be significantly larger than that. Or the picture of Debye screening might not even apply to the current system, as is reported in the work by Liu et al. According to this report, there is a shift in balance between ion diffusion and ion screening (electrostatic accumulation) to the diffusion side, due to ion flows such as electrodiffusion induced by source–drain or source–gate bias. This shift in balance leads to qualitatively different behaviors in the screening, and as a result, there is increased distance (~10 times) over which a charge can induce a nontrivial, electrostatic potential change (this might be considered as elongation of the Debye length). Under such conditions, tube—tube screening may affect the performance of nanotube biosensors by screening the charges inside an area of 10 \times 10 nm2 around tube—tube junctions. In our experiment, there might have been an external flow of ions due to the SD, SG, and DG biases. In addition, we have used external air flow to enhance the mixing of the solution. This might have significantly increased the screening length of our system. We are currently investigating the effect of such external flow on biosensing.

Finally, using devices with an optimized nanotube density (low density), we successfully demonstrated the detection of the SARS biomarker protein (N protein) at physiological conditions (1× PBS) with a detection limit of 5 nM. The device preparation is shown in the Supporting Information (Figure S3). We would like
to emphasize that these detection measurements took place in a high electrolyte medium, such as $1 \times$ PBS, because we used a unique capture probe anchored to the nanotube surface. This capture probe is an engineered antibody mimic protein (AMP) based on the human fibronectin (Fn) scaffold. We have previously described the use of this AMP for nanowires biosensors.59 Beside the high binding affinity for the target protein, this AMP is tiny in size (on the order of 3–4 nm). The captured analyte is thus held in closer contact with the nanotubes than it would be if conventional antibodies were used. Bovine serum albumin (BSA) was used to cover the empty regions of source–drain electrodes and nanotubes to prevent nonspecific binding59 (Figure 5a). The schematic diagram of the device ready for sensing is shown in Figure 5a. The AFM images of a carbon nanotube before and after functionalization with Fn are shown in Figure 5b,c, respectively. The insets in these figures show an illustration of the nanotube surface.

The selectivity of the device was first confirmed against BSA. For a density-optimized device, as shown in Figure 5d, an addition of 4 μM BSA at $t = 400$ s did not cause any stationary change in the normalized I_d. On the other hand, exposing the device to N protein (5 nM) rapidly led to decreased conductance by \sim2%. Further increases in the N protein concentration led to further decreases in the normalized current, confirming the selective detection of N protein. The inset of Figure 5d shows the plot of normalized response versus concentration of N protein with a fitting using the Langmuir isotherm model to estimate the dissociation constant (the solid red line in the inset). The fitting yielded K_d of 33 nM, while K_d estimated from surface plasmon resonance was 3 nM.59 The discrepancy might arise from structural disorder caused by absorption of the branches of Fn onto the nanotubes. While Fn is anchored onto the nanotubes at the C-terminus to maintain the active orientation, part of Fn might be attracted to the nanotube surface due to hydrophobic interaction, thus causing a structural disorder. Clearly, the density-optimized device can be used as a detection tool to find the N protein under conditions similar to physiological fluids. This ability to operate in high electrolyte concentrations is a critical characteristic for practical applications of this technology.

In conclusion, our study has revealed the importance of considering the nanotube density when designing carbon nanotube biosensors. We have proposed that percolation and tube–tube screening play important roles in the enhanced sensitivity of low density devices. We have also shown how our newly developed biosensors can be used as a quick diagnostic tool for high-profile diseases, such as SARS. The detection of the SARS biomarker in a condition closer to the physiological conditions is a critical step toward the practical application of such nanobiosensors.

METHODS

Nanotube FET biosensors were fabricated following a previously reported method with a few modifications.60 Briefly, nanotubes were grown by chemical vapor deposition (CVD), a method that consistently results in high-quality, low-defect, single-walled nanotubes with an average diameter of 1–2 nm and average length of 5–30 μm. The nanotube density in the FET channel was determined by controlling the deposition time of ferritin (catalyst nanoparticle precursor) on the Si/SiO$_2$ substrate. An aqueous solution of ferritin was obtained by diluting 1:100 the stock solution of ferritin with DI water. The Si/SiO$_2$ substrate was soaked in this ferritin solution for 10, 20, or 60 min. The ferritin-coated substrate was then annealed at 700 °C for 10 min to form iron-based nanoparticles to be used later as catalysts for the CVD growth of carbon nanotubes. Nanotubes were grown for 10 min at 900 °C using 2500 sccm of methane, 10 sccm of ethylene, and 600 sccm of hydrogen. Metal electrodes (10 nm Cr and 40 nm Au) were deposited through a shadow mask, which yielded devices with 200 μm channel length and 5 mm channel width, as indicated in Figure 1a. This wide area of the nanotube network makes different batches of devices have similar electrical characteristics, decreasing the device to device variation and increasing the reproducibility of results. Unwanted nanotubes located outside the channel were etched by oxygen plasma, while the channel was covered with a protecting film of poly(methyl methacrylate). The entire fabrication process leaves nanotubes intact and clean,61 an ideal condition for the fundamental studies conducted here.

Acknowledgment. The authors acknowledge financial support from the L.K. Whittier Foundation, the National Institutes of Health, and the National Science Foundation (CCF-0726815, CCF-0702204, AI085583, and EB008275).

Supporting Information Available: Materials, experimental setup for biosensing, stability of the Pt gate potential upon exposure to streptavidin, surface functionalization of carbon nanotubes for N protein sensing, and surface saturation with BSA. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES

Supporting Information

Importance of Controlling Nanotube Density for Highly Sensitive and Reliable Biosensors Functional in Physiological Conditions

Fumiaki N. Ishikawa,\(^{(a)}\) Marco Curreli,\(^{(b)}\) C. Anders Olson,\(^{(b)}\) Hsiang-I Liao,\(^{(d)}\) Ren Sun,\(^{(d)}\)

Richard W. Roberts,\(^{(b)}\) Richard J. Cote,\(^{(c)}\) Mark E. Thompson,\(^{(b)}\) Chongwu Zhou\(^{(a)*}\)

Departments of \(^{(a)}\)Electrical Engineering, \(^{(b)}\)Chemistry, and \(^{(c)}\)Pathology, University of Southern California, Los Angeles, CA 90089

Department of \(^{(d)}\)Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095

* Corresponding author: chongwuz@usc.edu.

Table of Content

1. Materials

2. Experimental setup for the biosensing

3. Stability of Pt gate potential upon exposure to streptavidin

4. Surface functionalization of carbon nanotubes for N protein sensing

5. Surface saturation with BSA
1. Materials

Phosphate buffered saline (PBS, pH = 7.40, 0.125 M NaCl) was purchased from Mediatech Inc. Water was of high purity (HPLC grade). (1-Ethyl-3-[3-Dimethylaminopropyl]carbodiimide hydrochloride) (EDC) was purchased from Aldrich. (N-[ß-Maleimidopropionic acid] hydrazide, trifluoroacetic acid salt) (BMPH) was purchased from Pierce. 1-pyrenebutanoic acid NHS ester was purchased from AnaSpec. Bovine serum albumin (BSA) was purchased from Sigma. Stock solutions of Fibronectin (1 µM in PBS buffer) and N protein (200 nM in PBS buffer) were provided by Prof. Ren Sun’s research group at UCLA.

2. Experimental setup for the biosensing

Figure S1 shows the schematic diagram of the biosensing experiment setup. A Pt wire was used as a liquid gate electrode. Air flow was continuously applied to the buffer (PBS) surface to enhance mixing and to minimize the mechanical perturbation (noise) caused by additions of any solutions to the buffer.

![Figure S1](image-url)
Figure S1. A schematic diagram of the biosensing experiment setup.
3. Stability of Pt gate in 1x PBS upon exposure to streptavidin

To confirm the stability of the Pt liquid gate potential upon addition of biomolecules (streptavidin in our case), we conducted a control experiment as described in ref. 1. We monitored the potential difference between the Pt gate and an Ag/AgCl reference electrode that serves as common in 1x PBS, while streptavidin was added to the buffer to a final concentration of 200 nM. We observed no change in the potential of Pt electrode against the reference Ag/AgCl electrode, suggesting that the potential of Pt gate is stable in 1x PBS against this concentration of streptavidin. We also conducted a similar experiment but using an Au electrode used as the source-drain electrode of the actual devices and an Ag/AgCl electrode, and observed similar result. These experiments confirm that there is little contribution from a false signal in our biosensing experiments.

However, we note that the potential of both Pt and Au electrodes were unstable in 0.01x and 0.0001x PBS upon addition of streptavidin (200 nM). This is a subject for further investigation.

Figure S2. a) A schematic diagram of the control experiment. b) A plot of the potential of Pt electrode with respect to an Ag/AgCl electrode in 1x PBS versus time. Streptavidin was added to the buffer to increase the concentration to 200 nM at the time indicated by the arrow.
4. Surface Functionalization

CNT device cleaning procedure. CNT devices were submerged for 5 minutes each in boiling tetrachloroethylene, acetone, and ethanol. Devices were rinsed with ethanol and dried with nitrogen (Figure S4(a)).

Attachment of the Fibronectin probe molecule. The attachment of the Fibronectin probe molecules is schematically illustrated in Figure S3. Immediately after cleaning, devices were wired on a custom-made printed circuit board and a mixing cell was assembled on the device. This mixing cell was used to deliver and handle all the chemical reagents necessary for surface modification and all the buffer solutions during active measurements. Devices were submerged into a 0.1 mM solution of pyrenebutanoic acid-NHS ester in methanol for about 1 hour, step (i). This bifunctional linker molecule will provide an amine reactive interface between the nanotube and other reagent solutions, as shown in Figure S3(b). A 5 mM solution of BMPH was allowed to react with the modified nanotube surface for 60-90 minutes. Unreacted NHS esters were quenched with buffered ethanolamine, pH 7.2, step (ii). Note that the pH of the quenching solution should not exceed 7.5 in order to avoid hydrolysis of the maleimid group or other undesired reactions. This last step resulted in the formation of a surface reactive toward thiols present on the Fibronectin probe molecule (Figure S3(c)). The BMPH solution was removed from the mixing cell by progressive dilution with PBS buffer. A solution containing 200 nM of Fn in 1x PBS and 1 equivalent of TCEP in 1x PBS was allowed to react with the NW surface overnight at 4 °C. Unreacted maleimid groups were quenched with the addition of 10 uL of a 50 mM solution of 2-mercaptoethanol for 10-15 minutes, step (iii). This Fn solution was replaced with 1xPBS by progressive dilutions and the functionalized devices (Figure S3 (d)) were stored submerged in 1x PBS at 4 °C.
Deposition of 1-pyrenebutanoic acid NHS ester

1) BMPH
2) Deactivation with ethanolamine

Freshly cleaned carbon nanotube surface

1) Fibronectin (1 Eq. TCEP)
2) Deactivation with 2-mercaptoethanol

Figure S3. Schematic procedure for the surface functionalization of carbon nanotube device with Fibronectin capture probes.
5. Surface saturation with BSA

The surface of the carbon nanotube devices after the attachment of Fn was saturated with BSA by adding BSA to the buffer until there was no response signal to further BSA addition. Figure S4 shows a typical plot of the normalized conductance over time during the surface saturation. At the beginning (for example, \(t = 30 \) s), addition of 10 mg/ml (~4 μM) BSA caused a significant drop in the conductance due to non-specific binding. However, as the BSA concentration was increased by further addition of BSA, the response to further addition was almost negligible at \(t = 1800 \) s where the BSA concentration was ~24 μM. We assumed that the surface of the nanotubes was saturated by Fn and BSA at this point, and used the device for N protein detection.

![Figure S4. Saturation of the sensor surface by BSA.](image-url)